Unit -> 1 Diode Circuits
Subject -> Analog Circuits
Faculty -> Dr Nidhi chauhan
Paper code -> BT 402
Lecture 4 -> BJt biasing

Bias Stabilization

- Stabilization is a process of making Q-point independent of changes in transistor parameter, temperature and changes in transistor parameter.
- If I_{CO} , V_{BE} and β changes simultaneously then net change in I_{C} .

$$\Delta I_C = \frac{\partial I_C}{\partial I_{CO}} \Delta I_{CO} + \frac{\partial I_C}{\partial V_{BE}} \times \Delta V_{BE} + \frac{\partial I_C}{\partial \beta} \Delta \beta$$

where,
$$\frac{\partial I_C}{\partial I_{CO}} = S \rightarrow \text{Current stability factor}$$

$$\frac{\partial I_C}{\partial V_{BE}} = S' \rightarrow \text{Voltage stability factor}$$

$$\frac{\partial I_C}{\partial \beta} = S_\beta = S'' \rightarrow \text{Amplification stability factor}$$

Note:

Out of three stability factor S is most significant reason being, if S is within tolerable limit then other S' and S" are guaranteed to remain within tolerable limit.

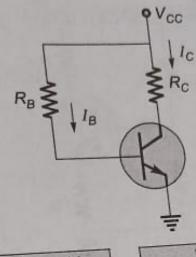
$$S_{\text{ideal}} = 1$$

Practically S should be less than 20.

Alternate evaluation of
$$S = \frac{1+\beta}{1-\beta \frac{\partial I_B}{\partial I_C}}$$

BJT Biasing

Biasing refers to providing appropriate DC voltage and DC current to an electronics device to operate it in a desired way.

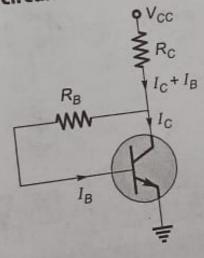

A BJT is biased:

- (i) To operate the BJT in active region so that it can be used as amplified.
- (ii) To maintain I_C stable so that the operating point does not drift and thermal run away does not happen.

Commonly Used BJT Biasing Circuit are:

- (i) Fixed biased circuit
- (ii) Collector to base bias circuit.
- (iii) Self bias circuit

(i) Fixed biased circuit


$$I_{B} = \frac{V_{CC} - V_{BE}}{R_{B}}$$

$$I_{B} = \frac{V_{CC} - V_{BE}}{R_{B}} ; I_{C} = \frac{V_{CC} - V_{CE}}{R_{C}}$$

 I_{B} is constant or fixed. Hence circuit is called fixed biased circuit.

 $S = 1 + \beta$; since S is very large I_C will be unstable.

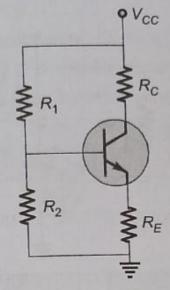
(ii) Collector to Base bias circuit

$$I_{C} = \frac{V_{CC} - V_{BE}}{R_{C}}$$

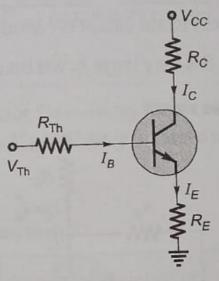
 $I_C = \frac{V_{CC} - V_{BE}}{R_C}$ (Assuming β to be large or $I_B \approx 0$)

$$I_{C} = \begin{bmatrix} V_{CC} - V_{BE} \\ R_{C} \end{bmatrix} \times \begin{bmatrix} \beta \\ \beta + 1 \end{bmatrix}$$

$$S = \frac{1 + \beta}{1 + \beta} \begin{bmatrix} R_{C} \\ R_{B} + R_{C} \end{bmatrix}$$


er.

nal


Advantage: It gives more stable I_C than fixed biased circuit. Drawback: Stability factor depend upon R_C , if R_C becomes smaller or

zero, stability factor becomes very large and I_C does not remain stable.

(iii) Self-Bias Circuit (Voltage Divider Circuit)

Thevenin Equivalent

$$V_{\text{Th}} = \frac{R_2}{R_1 + R_2} V_{CC}$$
; $R_{\text{Th}} = R_1 \| R_2$

$$I_C \cong \frac{V_{CC} - V_{CE}}{R_C + R_E}$$
; $I_E = \frac{V_{Th} - V_{BE}}{\left(R_E + \frac{R_{Th}}{\beta + 1}\right)}$ (Assuming β to be large)

$$I_E = \frac{V_{Th} - V_{BE}}{\left(R_E + \frac{R_{Th}}{\beta + 1}\right)}$$

$$S = \frac{1 + \beta}{1 + \beta \left(\frac{R_E}{R_{Th} + R_E}\right)}$$
 if $(1 + \beta) R_E >> R_{Th}$

if
$$(1 + \beta) R_E >> R_{Th}$$

Advantages:

- (i) Self bias circuit has least stability factor among all biasing circuits.
- (ii) Stability factor is independent of Rc.
- (iii) Self bias circuit can be used to bias BJT for any configuration.

Drawback:

Resistance $R_{\rm E}$ creates negative feedback due to which voltage gain

$$\frac{V_o}{V_i}$$
 or $\frac{V_o}{V_s}$ becomes smaller.

Thermal Run-away

It is the process of self destruction or damage of a transistor where an increase in temperature increase the collector current, causing a further increase in the temperature.

Thermal resistance (0)

$$\theta = \frac{T_j - T_A}{P_D} \quad (^{\circ}C/Watt \text{ or } ^{\circ}K/Watt)$$

where,

 $T_j \rightarrow$ Junction temperature (collector junction)

 $T_A \rightarrow$ Ambient temperature in Kelvin

 $P_{\rm D}
ightarrow {
m Power dissipated across collector junction}$

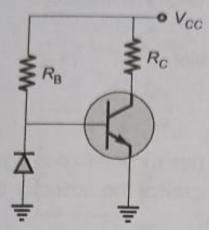
Condition to avoid thermal run away

A transistor will be thermally stable if

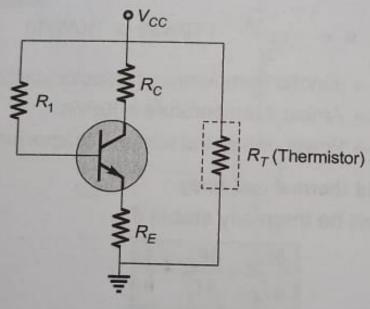
$$\left| \frac{\partial P_C}{\partial T_j} \le \frac{\partial P_D}{\partial T_j} = \frac{1}{\theta} \right|$$

 $\frac{\partial P_C}{\partial T_i}$ \rightarrow Rate at which heat is released where,

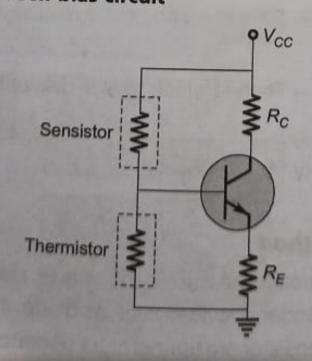
 $\frac{\partial P_D}{\partial T_i}$ \rightarrow Rate at which heat is dissipated


• For thermal stability
$$V_{CE} < \frac{V_{CC}}{2}$$

- In this method collector current is made stable by connecting **Compensation Method** temperature dependent devices such as diode, thermistor, sensistor. Thermistor and sensistor are temperature dependent resistors.


	л
\sim	
All D	
	ш
=	
5	1
Е.	ш
-	я
ШJ	
100	п
F.	
ps.	
=	
(SEE)
-	ш
H	
uu	
0.0	П
lat b	П
m,	4
DF D	п
6	
(SIR)	П

Thermistor	Sensistors
Temperature coefficient is negative	Temperature coefficient is positive
Fabricated from pure semiconductor	Fabricated from heavily doped semiconductor


1. Diode compensation for I_{co}

2. Thermistor compensation for I_{co}

3. Compensation in self bias circuit

